

Black Hole PIRE Webinar

Space Interferometry

Joseph Lazio

© 2019 California Institute of Technology. Government sponsorship acknowledged.

Overview

Overview

- Introduction and Historical Background
- Interfere-o-what?
- Science Motivations and Potential Missions

Objectives and Outcomes

- Heuristic understanding of interferometry

 a.k.a. possible to construct large synthetic
 telescopes by combining small ones in
 appropriate manner
- Appreciation for science motivations and rationale for potential future space missions
- Understanding that astronomy is conducted at many different wavelengths (colors of light) and that different wavelengths provide different information about the Universe

Aside

Joseph Lazio

Who?

- Chief Scientist, NASA's Deep Space Network
- Boy who always wanted to grow up to be radio astronomer
- Involved in early development of Low Frequency Array (LOFAR) and Long Wavelength Array (LWA)
- Former Project Scientist for Square Kilometre Array (SKA)
- Involved in multiple lunar radio telescope concepts
- Project Scientist for space-based interferometer under consideration by NASA

Historical Background

Pre-20th Century

Human eye capable of diffractionlimited imaging of about 1 arcminute 20/20 vision ~ U.S. quarter across football pitch

Modest optical telescopes provide diffraction-limited imaging at 1 arcsecond resolution 60× better

Can Two Stars Be Split?

Fundamental optics

$$\theta = \lambda/D$$

- λ = observing wavelength
- D = diameter of aperture

Human Eye

- λ ~ 550 nm (~ 0.00055 mm)
 - observing wavelength
 - green-yellow light
- D ~ 5 mm
 - diameter of pupil (aperture)
- $\sqrt{\theta} \sim 0.00011$ radians \sim 0.0063° \sim 0.4 arcminutes $\theta = \lambda/D$

Electromagnetic Spectrum

Full View of the Universe

MS 0735.6+7421

- Cluster of galaxies
 - About 2.6 billion lightyears away
 - In the constellation Camelopardalis
- Three views
 - Blue: Chandra X-rayObservatory
 - White: Hubble Space Telescope
 - Red: Very Large Array

Credit:

Hubble and Chandra: NASA, ESA, CXC, STScl, B. McNamara (Univ. of Waterloo) Very Large Array: NRAO, L. Birzan and team (Ohio Univ.)

Interferometry

Radio Telescopes

- λ ~ 0.30 m (~ 1 GHz)
- D ~ 300 m
 diameter of telescope
- $>\theta$ = 0.001 radians ~ 0.06° ~ 3 arcminutes $\theta = \lambda/D$
- ! Your eye has higher angular resolution than Arecibo telescope!

Radio Telescopes

- Arecibo diameter ~ 300 m
- ?? Match angular resolution of human eye ~ 1 km
- ?? Match angular resolution of modest visible wavelength telescope ~ 10 km

Radio Telescopes

Arecibo has hole in its middle!

How many holes can a telescope have and still work?

How Do Telescopes Work?

Exercise for the reader:

Consider a parabolic surface.

Show that initially parallel light rays, all traveling at the speed of light c, reach a common point, the focus, at the same time no matter where they reflect from the surface of the reflector.

Extra credit: Repeat for a spherical reflector such as Arecibo and show that the focus is a line.

Aperture Synthesis

- 1. Record signals at individual antennas
- 2. Bring them together "at the same time" (coherently)
- 3. Then ...

Interferometry or Aperture Synthesis

- 1. Record signals at individual antennas
- 2. Bring them together "at the same time" (coherently),
- 3. Then synthesize aperture!

a.k.a. build a telescope that's mostly holes!

Aperture Synthesis

Extra path length: $x = b \sin \psi$

Geometric delay: $\tau_g = x/c = (b/c) \sin \psi$

Aperture Synthesis

Conceptual Radio Telescope

*Today: Record to hard drive disk packs or even direct streaming across the Internet Historical note: Record on magnetic tapes, including

18

VHS tapes

Aperture Synthesis

Geometric delay: $\tau_g = x/c = (b/c) \sin \psi$

Need to know where antennas are

- Knowledge, not control
- Only relative positions

Earth Rotation Synthesis

Geometric delay: $\tau_g = x/c = (b/c) \sin \psi$

From perspective of distant observer, array changes shape

$$\tau_g = (b/c) \sin \psi$$
Output = $\sin(2\pi vt)\sin[2\pi v(t-\tau_g)]$
Output = $\sin^2(2\pi vt)\cos(2\pi v\tau_g)$ — $\sin(2\pi vt)\cos(2\pi vt)\sin(2\pi v\tau_g)$
Average for T >> $1/v$ or take v T >> 1
$$\sin^2(\text{big number}) \to \frac{1}{2}$$

$$\sin(\text{big number}) = \cos(\text{big number}) = 0$$

$$\text{Output} = \cos(2\pi v\tau_g)$$

$$\text{Output} = \cos(2\pi v\tau_g)$$

$$\tau_{\rm g}$$
 = (b/c) sin ψ

Output = $\sin(2\pi v t)\sin[2\pi v(t-\tau_g)]$

Output = $\cos(2\pi[b/\lambda]\sin\psi)$

Thompson, Moran, & Swenson

Mid-Term Review

✓ Receptor/antenna separation, measured in wavelengths, is equivalent to aperture diameter.

True for any optical instrument, not just synthetic apertures

✓ Baselines (a.k.a. antenna separations) determines angular resolution.

Distribution of baselines affects performance of synthetic aperture a.k.a. no free lunch theorem.

✓ Knowledge of relative antenna separations is critical.

Aperture Synthesis

1974 Nobel Prize in Physics

The Nobel Prize in Physics 1974 was awarded jointly to Sir Martin Ryle and Antony Hewish "for their pioneering research in radio astrophysics: Ryle for his observations and inventions, in particular of the aperture synthesis technique, and Hewish for his decisive role in the discovery of pulsars."

 $\theta = \lambda/D$

- ✓ Big *u* (or large*b*) meanssmall *l*
- Small u (or small b) means big l

"largest angular scale"

Whoa!

Van Cittert-Zernike Theorem

Heuristic: Output = $\Sigma_{\ell} \cos(2\pi u \ell)$

$$\Gamma(u,v) = V(u, v) = \int I(\ell, m) e^{-2\pi i(u\ell + vm)} d\ell dm$$

Van Cittert-Zernike Theorem

Van Cittert-Zernike Theorem

$$\Gamma(u,v) = V(u, v) = \int I(\ell, m) e^{-2\pi i(u\ell + vm)} d\ell dm$$

Assumptions

- Narrow field of view
- Co-planar array
- Monochromatic signals (narrow bandwidths)
- Instantaneous signal reception

Aperture Synthesis

Visibilities, *u-v* Plane, (Synthesized) Beams

$$u = 40,000$$

 $b_x = 40,000\lambda$

$$\lambda \sim 6$$
 cm (~ 5 GHz)

$$b_x \sim 2.4 \text{ km}$$

Aperture is 2.4 km in size!

Resolution ~ 5"

Remember where we started?!

Visibilities, u-v Plane, (Synthesized) Beams

$$I(\ell, m) = FT[\Gamma(u, v)]$$

Sky brightness I(*l*, m) is real quantity

$$\Gamma(u, v) = \Gamma^*(u, v) = \Gamma(-u, -v)$$

Visibilities, u-v Plane, (Synthesized) Beams

$$u = b_x/\lambda$$

Sample range of λ or ν , get range of (u, v)

> Fill in synthetic aperture

Visibilities, *u-v* Plane, (Synthesized) Beams

$$u = b_x/\lambda$$

Baselines change as Earth rotates, b = b(t)

Sample over range of time, get range of (u, v)

> Fill in synthetic aperture

Visibilities, *u-v* Plane, (Synthesized) Beams

$$\Pi(u, v) = 1$$
 if measured $\Pi(u, v) = 0$ if not measured

Beam =
$$FT[\Pi(u, v)]$$

a.k.a. point spread function

Sidelobes!

Measure of performance of telescope

Very Long Baseline Interferometry

Space Interferometry jpl.nasa.gov

Space-based Interferometry

How Small Can Radio Sources Be?

Space-based Interferometry

- By mid-1970s, clear that some radio sources still unresolved on terrestrial baselines
- Also superluminal motion apparent
- Heuristically, if source too small, energy density not enough to be visible to terrestrial radio interferometers?
 - A.k.a. no free lunch theorem
 As synthetic apertures, interferometers limited to observing bright sources, because telescope with lots of holes
 - Inverse Compton catastrophe

VLBI Space Observatory Program (VSOP) / HALCA

JAXA-led 8 m-diameter spacebased antenna

 Some sources still have point-like or unresolved components, implies physics about central engines

> Coherent or Dopplerbeamed emitters

RadioAstron

Roscosmos-led 10 m-diameter space-based antenna

> Baselines comparable to Earth-Moon distance

Space Interferometry jpl.nasa.gov

Space-based Interferometry

- In Einstein's General Relativity, black hole is volume disconnected from rest of Universe
- Event horizon is boundary between inside black hole and rest of Universe

Schwarzchild radius For Sun, $R_s \cong 3$ km

$$R_g = R_s \equiv \frac{2GM}{c^2}$$

Credit: Moondigger Space Interferometry jpl.nasa.gov

Space-based Interferometry

$$M \sim 4 \times 10^6 M_{\odot}$$
 $2R_g/D_{GC} = \sin \ell \sim \ell$

- $R_a \sim 12 \times 10^6 \text{ km}$
- $D_{GC} \sim 8000 \text{ pc} (\sim 2.5 \times 10^{17} \text{ km} \sim 26,000 \text{ light years})$

Space-based Interferometry

Need ~ 10 microarcsecond resolution

- Choose λ ~ 0.13 cm
- **>** b ~ 10,000 km
- Event Horizon Telescope = Earth-scale telescope to image nearby black hole event horizons
 - ➤ See April 10 press release

Credit: NASA/ESA/Hubble Heritage Team (STScl/AURA)/P. Cote (Herzberg Institute of Astrophysics)/E. Baltz (Stanford University)]; Event Horizon Telescope collaboration et al.

Space-based Interferometry

Nominal Event Horizon Telescope is extremely sparse array

Space Interferometry jpl.nasa.gov

EHT is sparse array

- Many "holes" in synthetic aperture
 - ... or many holes in *u-v* plane or Fourier plane
- Earth-rotation synthesis1 rotation = 24 hr
- ➤ Any way to fill these u-v plane holes?

Electromagnetic Spectrum

Solar Radio Bursts

Type II and III

Slowly descending in frequency as coronal mass ejections expand into

Classes of Models for Ion and Electron Acceleration by CMEs

- (A) Shock and compression acceleration in front of CME as it expands into corona
- (B) Shock and compression acceleration on flanks as CME expands laterally into quiet streamers
- (C) Magnetic reconnection at current sheets behind the ejecta
- (D) Non-local acceleration as plasma is diverted and compressed by expanding filament

SunRISE

- First full interferometer in space, first decametric-hectometric (DH) imaging
- Loose formation of six 6U form factor smallsats in approximate 10 km sphere
- GEO Plus Orbit (25 hr orbit period)
- Radio receiver (0.1 MHz 20 MHz) with crossed 5 m dipole antennas
- Relative position knowledge to within 3 m, timing to nanoseconds
- Need access to space because Earth's ionosphere is opaque!
- If selected, notional launch in 2023

SunRISE Spacecraft and Science Instrument

Sun Radio Interferometer Space Experiment Pre-decisional - For planning and discussion purposes only.

Beyond the Radio

jpl.nasa.gov

Summary

- High angular resolution imaging demands large apertures
- Interferometry is powerful (only) way to synthesize large apertures
 Depends on relative antenna separations, knowledge not control
- Exciting future space possibilities for opening new windows, peering at black holes in new ways

jpl.nasa.gov

Electromagnetic Spectrum

Credit: Wikipedia Images